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Artificial neural network (ANN) modeling and multiple linear regression (MLR) analysis have been used
to develop a powder hard-facing process using high-energy plasma-transferred (HEPT) heating. HEPT
heating can produce coatings with minimal surface roughness. An optimal procedure was developed
involving the least number of process parameters but producing the most desirable performance charac-
teristic. The quality characteristic of interest is the surface roughness after HEPT processing, utilizing the
“the-smaller-the-better” criterion. Process performance was evaluated with respect to the signal-to-noise
ratios, which were obtainable through experiments. The experimental results conclude that ANN models
demonstrate a greater accuracy of predicting the surface appearance than the MLR models in terms of
prediction error and the coefficient of determination. The results also reveal the most significant process
control parameters. The predicted value of powder hard-facing roughness, through the implementation of
optimal settings, produces a satisfactory result. The confirmation experiment showed that the ANN method
achieved the expected optimal design goals for the HEPT powder hard-facing, thereby justifying the
reliability and feasibility of the approach.

Keywords artificial neural network, hard-facing, high-energy plasma
transfer, multiple linear regression, Taguchi methods

1. Introduction

Powder hard-facing coatings are used frequently to improve
surface wear resistance. Surface treatments and coating tech-
nologies, including, for example, welding, surface hardening,
and thermal spraying, generate hard thick layers on exterior
surfaces of heat-resistant or wear-resistant materials. This pro-
cess produces industrial components with better performance
characteristics, such as improved appearance or better protec-
tion against corrosion and high temperatures.

Recently, a high-energy plasma-transferred (HEPT) coating
process was developed for industrial use, and it has overtaken
traditional powder hard-facing techniques such as oxyacetylene
and tungsten inert gas welding for surface modification (Ref 1,
2). Surface powder hard-facing by plasma transfer welding
plays an important role in the manufacture of aircraft compo-
nents. Specific functional improvements are attributed to
denser packing through efficient microwelding during the pow-
der hard-facing process (Ref 3). Selected micropowdered al-
loys have been used to solve wear problems due to their high
resistance to corrosion, erosion, and cyclic thermal and me-
chanical stresses (Ref 4-7).

Theoretically, HEPT coatings should produce powder hard-
faced microalloys with high strength, hardness, and excellent

resistance to wear and corrosion. Unfortunately, this is not true
in all cases. Few materials can meet the specific demands by
altering their physical and chemical surface properties during
hard-facing. Therefore, the characteristics of coating surface
topography have been investigated for decades. For example,
most research has examined the wear and mechanical proper-
ties, corrosion performance, and hard-facing microstructure as
a function of coating process (Ref 8, 9). Understanding the
characteristics of a hard-faced surface can assist in predicting
wear behavior and controlling the extent of wear damage.
However, knowledge that can systematically optimize a hard-
facing coating is lacking. In particular, plasma transferred arc
(PTA) coating process parameters are not well understood. It is
essential to produce hard-faced coatings of high quality, and a
systematic design process is needed in which process control
parameters are known and optimized.

A simple, efficient, and systematic procedure developed by
Taguchi (Ref 10) utilizes orthogonal arrays to obtain the best
possible model with the fewest experiments. Over the past 15
years, many manufacturers around the world have successfully
used this technique, because it allows them to minimize manu-
facturing time and costs.

Multiple linear regression (MLR) analysis (Ref 11-13) is
one of the most widely used statistical techniques. It not only
provides simple methods for establishing a functional relation-
ship between the response and explanatory variables, but also
gives reasonable predictions of the responses.

Artificial neural network (ANN) modeling (Ref 14) was
originally inspired from the operation of the brain. The mod-
eling simulates the learning, clustering, and reasoning capabili-
ties of the brain. Combining such a strong learning capability
with parallel computation and nonlinear mapping, ANN mod-
eling has been used to solve nonlinear systems and process
control problems (Ref 15-24). To develop a functional model,
ANN applies a back-propagation algorithm to train multiple-
layered, feed-forward networks using diverse transfer func-
tions. A well-trained ANN model can estimate predictive
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performance through pattern association and pattern classifica-
tion.

As mentioned above, Taguchi design methodology, MLR
analysis, and ANN modeling are effective tools for obtaining
good process control; however, their concurrent application has
been limited. Therefore, this article proposes a method that
combines either ANN or MLR with Taguchi methodology,
thereby taking advantage of the strength of each technique to
improve the specific engineering design. The proposed ap-
proach not only yields sufficient understanding of the effects of
the process parameters, but also determines an optimal process
route to ensure that the design goals are met, in this case, that
the surface morphology of a HEPT powder hard-facing exhib-
its the best possible performance characteristics.

2. Powder Hard-Facing, High-Energy
Plasma-Transferred Coating Process

2.1 Superalloy Hard-Facings

Figure 1 shows the equipment used to produce the powder
hard-facing in the HEPT process with the surface ripples of
coating layer shown. The hard-facing surface in the coating
zone consists of the primary wear-resistant alloy and the melted
powder hard-facing in the joined bead.

High-energy plasma-transferred welding is the melting and
atomizing of alloy feedstock into a powder using plasma. The
process forces gas through an electric arc connecting noncon-
sumable electrodes in a torch. The plasma is the heat source,
forming a molten weld in the same manner as gas tungsten arc
welding. When the hard-facing is applied to a surface that can
sustain substantial surface buildup, it produces a coating on
that material. The HEPT does not penetrate the workpiece
thickness as in the hardening process, and it yields a thicker
deposit than either thin-film coating or metallic plating. Thus,
HEPT hard-facing is best suited for surfaces needing thick
deposits. Specifically, this process is appropriate for rebuilding
worn parts because it can be applied to almost any substrate
using a variety of coating compositions.

2.2 Experimental Setup

The hard-facing materials used in this study are powders
with compositions Co-2.4wt.%C-0.1wt.%Mo-1.1wt.%Si-
12.5wt.%W-30wt.%Cr and Ni-0.45wt.%C-2.9wt.%Fe-
3.9wt.%Si-0.05wt.%B-11wt.%Cr with particles ranging from

40 to 70 �m. These superalloy powders are specifically used in
surface-engineering applications. In the HEPT coating experi-
ments, the powders were deposited onto SKD61 tool steel us-
ing the PTA coating process. The Co-base powder is widely
applied to wear-resistant components, while the Ni-base pow-
der is used for heat-resistant and corrosion-resistant hard-
facings. Due to limitations of the machining equipment and
manufacturing setup for the HEPT process, control factors
were selected as shown in Table 2. The selection criteria were
based on data in HEPT technical reports and opinions from
welding experts (Ref 6).

An optical microscopy and surface profilometry were used
to measure the roughness dimensions and the mean surface
roughness (Ra) of the hard-facing to select the best morphology
of the bead surface over the 2.4 mm length. The laser gage was
used to scan the surface topography, and the image of the
geometric figure was reproduced as a plane of the hard-facing
bead over a 1 mm2 area.

3. Statistical Design of Experiment

3.1 Taguchi Design

The Taguchi method provides a simple, efficient, and eco-
nomic approach to estimating quality characteristics as well as
reducing costs. This method utilizes orthogonal arrays to give
a systematic evaluation for the process design factors of inter-
est. The orthogonal arrays are intentionally designed to collect
sufficient information while using the least number of experi-
ments. In Table 1, the eight control factors used in the design
matrix are shown with the level of significance for each HEPT
hard-facing control factor. To be specific, the control factors
included: the type of hard-facing alloy powder; the accelerating
voltage; the electric arc current; the electric arc speed of travel;
the stand-off torch distance; the powder feed rate; the flow rate
of the pilot gas; and the preheat temperature.

Table 2 presents the experimental layout for the L18 or-
thogonal array. Except for factor A, which has only two levels,
the other seven factors have three levels. Therefore, 21 × 37

experiments are needed to produce a full factorial design ex-
periment, but only 18 are needed for the L18 orthogonal array.

3.2 Evaluation of the Signal-to-Noise Ratio

The formulation of the signal-to-noise ratio (SNR) is de-
signed so that a larger value leads to better process results.
However, the method for calculating SNR varies and depends
on whether the response variable is too large, too small, or on
target. In this case, the SNR formula follows the-smaller-the-
better criterion because the response variable (i.e., surface

Table 1 Control factors and their levels

Process control factor Level 1 Level 2 Level 3

A Powder hard-facing type Co-base Ni-base …
B Accelerating voltage, V 10 15 25
C Electric arc current, A 100 130 160
D Travel speed, cm/min 6 10 15
E Torch standoff, mm 8 12 15
F Powder feed rate, L/min 3 4.5 6
G Pilot gas flow rate, L/min 2.5 3.0 3.5
H Preheat treatment, °C 25 150 250

Fig. 1 Powder hard-facing equipment schematic used in the PTA
coating
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roughness) is to be as small as possible. The Taguchi SNR
formula takes both the average and the standard deviation into
consideration:

SNRi = −10log�1

n�j=1

n

Yij
2� (Eq 1)

where SNRi stands for the SNR of the i th test, n is the total
number of trials in each test, and Yij denotes the observed
surface roughness of the j th trial for the i th test. More precisely,
two repeated trials are performed for each of the 18 hard-facing
tests, so n � 3 and i ranges from 1 to 18.

3.3 Analysis of Variance

To determine how the control factors affect the surface
roughness, analysis of variance (ANOVA) is performed, which
estimates and tests the effects of different treatments on the
response variable. Based on the analysis, the factors that have
the most significant effect on surface roughness are deter-
mined. Subsequent experiments can be focused on these factors
during HEPT coating. The ANOVA table contains variations
(i.e., sums of squares) of the process control factors as well as
random errors, degrees of freedom, mean squares, F-values,
and contribution percentages. The contribution percentage is
used to compare the relative importance of contributions from

the process control factors. Factors with higher contribution
percentages are ranked higher in terms of importance in the
experiment. That is, they have a significant effect on the quality
criterion.

3.4 Multiple Linear Regression Analysis

Multiple linear regression analysis is a procedure that pre-
dicts a dependent/response variable from two or more indepen-
dent variables using a linear function. To determine the best fit
to the data, the least-squares method is used to minimize the
sum of all squared deviations from the predicted results and the
actual data. With a sample of n observations of the dependent
variable Y, a possible MLR model with interaction effects takes
the form (Ref 12):

Yi = �0 + �
j=1

p−1

�j Xij + �
j,k=1
j�k

p−1

�jk Xij Xik + �i, i = 1, . . . , n (Eq 2)

where Yi stands for the ith observation of Y, Xij denotes the ith
observation of the jth independent variable, and �’s are the
unknown regression parameters to be determined. The random
errors �i are assumed to be independent from one another, and
follow a normal distribution with a mean of zero and a constant
variance of �2.

Table 2 Experimental results

Test

PTA control factors Coating surface roughness (Ra)

SNR, dBA B C D E F G H N1, µm N2, µm N3, µm Mean SD

1 1 1 1 1 1 1 1 1 9.8 10.3 11.1 10.40 0.66 −20.35
2 1 1 2 2 2 2 2 2 12.4 13.1 12.7 12.73 0.35 −22.10
3 1 1 3 3 3 3 3 3 11.1 13.1 10.6 11.60 1.32 −21.33
4 1 2 1 1 2 2 3 3 14.4 17.1 15.6 15.70 1.35 −23.94
5 1 2 2 2 3 3 1 1 18.6 21.2 20.1 19.97 1.31 −26.02
6 1 2 3 3 1 1 2 2 11.2 11.3 10.7 11.07 0.32 −20.88
7 1 3 1 2 1 3 2 3 14.1 14.2 14.3 14.20 0.10 −23.05
8 1 3 2 3 2 1 3 1 11.4 11.5 12.1 11.67 0.38 −21.34
9 1 3 3 1 3 2 1 2 14.3 14.7 15.1 14.70 0.40 −23.35

10 2 1 1 3 3 2 2 1 13.9 15.9 14.9 14.90 1.00 −23.48
11 2 1 2 1 1 3 3 2 17.1 18.3 19.8 18.40 1.35 −25.31
12 2 1 3 2 2 1 1 3 16.7 17.4 19.1 17.73 1.23 −24.99
13 2 2 1 2 3 1 3 2 11.3 10.7 11.1 11.03 0.31 −20.86
14 2 2 2 3 1 2 1 3 17.1 15.6 17.5 16.73 1.00 −24.48
15 2 2 3 1 2 3 2 1 13.9 12.1 11.7 12.57 1.17 −22.01
16 2 3 1 3 2 3 1 2 13.4 14.2 15.6 14.40 1.11 −23.18
17 2 3 2 1 3 1 2 3 13.1 12.6 12.9 12.87 0.25 −22.19
18 2 3 3 2 1 2 3 1 12.6 13.2 13.8 13.20 0.60 −22.42
19 1 3 1 3 1 1 2 1 8.5 8.5 8.7 8.57 0.13 −18.66

A, powder hard-facing type; B, accelerating voltage, V; C, electric arc current, A; D, travel speed, cm/min; E, torch standoff, mm; F, powder feed rate, L/min;
G, pilot gas flow rate, L/min; H, preheat treatment, °C; SD, standard deviation; SNF, signal-to-noise ratio

Table 3 The signal-to-noise ratios for control factors and levels

A B C D E F G H

Level 1 −22.49 −22.93 −22.48 −22.87 −22.75 −21.77 −23.73 −22.61
Level 2 −23.22 −23.04 −23.58 −23.24 −22.93 −23.30 −22.29 −22.62
Level 3 … −22.59 −22.50 −22.46 −22.88 −23.49 −22.54 −23.34
Effect 0.73 0.45 1.10 0.78 0.18 1.72 1.45 0.73
Rank 5 7 3 4 8 1 2 6
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3.5 Artificial Neural Network

The back-propagation algorithm first proposed by Werbos
(Ref 13) in the 1970s is the most widely used ANN. When a
back-propagation network is cycled, the activations of the input
nodes are propagated forward to the output layer through the
connecting weights. The idea of network construction is shown
in Fig. 2. In this study, a network is needed for eight signal
inputs and one output. Therefore, (X1, X2, . . . , X8), (H1, H2,
. . . , Hn), and Y are the inputs, hidden-layer outputs, and out-
put-layer outputs, respectively, where the output of each hid-
den-layer node is:

Hk = f1�X1, X2, . . . , X8�
=�1 + exp�−�

i=1

8

Wik
1 � Xi + �i

1��−1, k = 1, . . . , n

(Eq 3)

and the output of the output-layer is

Y = f2(H1, H2, . . . , Hn) = ��
k=1

n

Wk1
2 � Hk + �k

2� (Eq 4)

f1 and f2 denote the transfer functions for the hidden and output
layers, respectively. As seen in Eq 3 and 4, the activation
function f1 is a logistic sigmoid transfer function in [0, 1], and
f2 is a linear function. Wik

1 represents the connection weight
from the ith input node to the kth hidden node, and Wk1

1 repre-
sents the connection weight from the ith hidden-layer node to
the output. The � values denote the biases between nodes. The
selection for the training of the network is the steepest gradient
descent algorithm, which should converge to the desired value.
The ANN training is carried out until the cost function (i.e., the
error between the output response value and the target value) is
within a desired value.

4. Experimental Results and Discussion

4.1 Analysis of the Experimental Results

The quality characteristic for the HEPT powder hard-facing
process is the local surface roughness of the hard-facing zone.
Table 2 shows the experimental surface roughness results.
Among the 18 experimental trials, test 1 had the smallest mean
surface roughness (10.40 �m), while Test 5 had the largest

mean roughness (19.97 �m). It is evident that the specimens
had much larger surface roughness values compared with those
of the parent material (6 to 7 �m), because HEPT powder
hard-facing yields a dense thick deposit. This is attributed to
the heat-flow motion of the powered alloys in the areas of the
molten substrate.

4.2 The Signal-to-Noise Response Effects and the
Optimal Setting

The performances of the experimental settings are evaluated
from the SNR (Table 2). The SNR response effects in Table 3
show the differences of the largest-level SNR and the smallest-
level SNR for each of the factors. Factors F-powder feed rate,
G-pilot gas flow rate, C-electric arc current, and D-arc travel
speed have relatively strong effects on the variability in powder
hard-facings roughness. The SNR response effect analysis also
identified the optimal experimental conditions (i.e., the largest
SNR for each factor) for the HEPT hard-facing process: A1;
B3; C1; D3; E1; F1; G2; and H1.

4.3 Analysis of Variance for Taguchi Methods

The ANOVA was used to evaluate the significances of vari-
ous factors affecting surface roughness. The ANOVA for the
experimental SNR results is shown in Table 4. It is clear that
factors F, G, C, and D (decreasing order of importance) are the
most significant processing parameters and coincide with the
conclusions drawn from Table 3. These factors account for
nearly 84% of the total variance of roughness.

4.4 The Multiple Linear Regression Analysis

The control factors are selected as the independent variables
and the second-order interactions of the four most significant

Table 4 Analysis of variance for Taguchi methods

Source of
variation

Sum of
squares

Degrees of
freedom Variance

Variance
ratio

Percentage
contribution

A 2.803 1 2.803 17.786 6.108
B 0.966 2 0.483 3.064 2.105
C 7.111 2 3.555 22.560 15.496
D 4.784 2 2.392 15.179 10.426
E 0.150 2 0.075 0.476 0.327
F 15.899 2 7.949 50.440 34.646
G 10.745 2 5.373 34.089 23.415
H 3.116 2 1.558 9.886 6.790
Error 0.315 2 0.158 12.690 0.687
Total 45.889 17 2.699 6.298 100.00

A, powder hard-facing type; B, accelerating voltage, V; C, electric arc
current, A; D, travel speed, cm/min; E, torch standoff, mm; F, powder feed
rate, L/min; G, pilot gas flow rate, L/min; H, preheat treatment, °C

Fig. 2 Structure of the three-layer ANN

Fig. 3 The trained 8-18-1 ANN structure
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factors (C, D, F, and G) as obtained in section 4.3 to establish
the MLR model. The least-squares regression equation is:

Ŷ = −38.86 + 2.17A + 0.19B + 0.56C − 0.64D + 0.42E
− 4.89F + 18.26G − 0.022H + 0.02CD − 0.03CF − 0.22CG
− 0.01DF − 0.79DG + 3.43FG (Eq 5)

The correlation coefficient (R2) is 0.744 for Eq 5, indicating
that approximately 74% of the total variance of the surface
roughness can be accounted for by the eight control factors. For
comparison, other MLR models are compared with the ANN
model in section 4.6.

4.5 The Artificial Neural Network Simulation of High-Energy
Plasma-Transferred Powder Hard-Facing Process

It has been shown by theoretical studies that one hidden
layer, coupled with logistic sigmoid transfer function, will be
sufficient for ANN structures (Ref 8). The numerical relations
between the number of training patterns and input variables
usually play an important role in determining the number of
nodes in hidden layers, which is considered to be a matter of
great significance due to its effect on the error function. A
single hidden-layer ANN is denoted by i-k-j with i inputs, j
outputs, and k as the number of nodes in the hidden layer. The
ANN models used herein are 8-18-1 and 4-18-1 networks.
Figure 3 shows the diagram for the trained optimal 8-18-1
ANN structure in which the error function in learning iterations

is bounded within the desired value. For both structures, the
powder hard-facing roughness is the output response. How-
ever, the input signal for the 8-18-1 model possesses eight
control factors, while the 4-18-1 model uses the four significant
control factors determined from the ANOVA. The learning
process is iterative with the training set propagating to ANN
repeatedly until the error function reaches the desired value.
Figures 4 and 5 show the convergence of the root mean square
(RMS) values of the two models from the trained data. As
shown in these figures, the RMS of the trained ANN has re-
duced to a pleasing value of 10−27 �m after <5500 training
epochs. (In this article, the ANN models train 104 epochs.) The
8-18-1 and 4-18-1 ANN models yield almost the same result.
However, the 4-18-1 ANN model achieves the same desired
RMS error in fewer iterations than the 8-18-1 ANN model. The
interconnection weights-IW(1,1) and LW(1,2) and biases-b(1)
and b(2) in the trained networks are determined when the RMS
error is minimized. The adjusted weights using the steepest
gradient method are shown in Table 5.

4.6 Comparative Analyses of Artificial Neural Network and
Multiple Linear Regression

Table 6 shows the results from various models using the
MLR and ANN methods. The MLR models with more ex-
planatory variables yield better fits and predictions. In Table 6,
model 3 (equivalent to Eq 5) is the best model, yielding a
moderate fit with R2 � 0.7442 and a mean prediction error of
1.145 �m.

Table 5 The adjusted weights of the 8-18-1 artificial neural network (ANN) model

IW�1,1� =

0.39127 0.43978 2.9327 0.064149 0.02418 1.577 4.0716 4.0919

−4.0277 −0.58133 −3.431 −0.31437 0.52434 0.054155 −2.002 −0.70446

−4.518 19.1691 0.95517 −18.5625 10.0141 1.3671 −3.721 −0.20266

−2.5689 −0.095383 −0.17542 −0.16771 0.67896 0.36032 4.8564 −0.074196

−0.083534 −17.2497 −3.727 −9.2687 −0.86813 2.5315 −3.8087 1.7605

−0.14848 −0.24318 −0.0089413 0.19587 −0.422681 1.3551 3.4972 0.50924

4.4112 −0.24318 0.1532 −0.20757 −0.21003 −0.99199 2.1793 0.14336

1.0976 −0.28883 0.13995 −0.16096 −0.60647 1.5457 4.8552 −0.036122

−1.7981 0.36381 0.088325 −0.048089 0.48659 0.083271 −3.0517 0.088608

15.6074 1.9004 −0.49745 2.1681 −2.2735 14.5015 −21.6521 0.22946

1.2582 −2.0682 −11.3218 −1.0612 −0.50743 0.66539 −4.2057 −2.1156

−3.4286 0.28551 1.0194 0.32948 −0.03261 −0.87665 3.595 0.22894

3.1586 16.6337 −7.0953 23.6581 −8.8894 −7.602 −0.37002 5.6206

5.2207 0.023976 0.22091 −0.39909 −0.58224 −1.0848 −1.8422 −1.1135

0.9243 0.27778 −0.22479 −0.26889 −0.26494 1.5074 −1.2178 −0.10729

−4.2033 −0.13017 1.3451 0.66553 0.32592 −0.34628 3.166 −4.7486

2.5366 3.9058 −0.27783 −8.2523 3.3664 −1.5823 −1.6594 0.28458

0.67689 0.2809 −1.1619 2.0091 0.50135 −0.063662 −3.8055 1.5319

LW�2,1� = �
−0.94186 −0.35754 −2.6154 −0.55355 −0.69749 −0.46708 2.2161 3.0311

2.4188 14.1385 −0.58619 1.0555 −11.8543 −3.0654 0.65123 5.494

6.7976 −0.13802
�

b�1� = �
−0.60 17.16 35.01 −7.37 3.39 2.87 −1.97 −20.52

17.93 −6.84 21.65 −13.89 0.12 7.361 −2.11 −21.81

12.70 5.57
�

b�2� = ��2.14��
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Note that in the ANN models, a nonlinear activation func-
tion (Eq 3) is used to transform the input variables, incorpo-
rating the interactions among them. Hence, it is not necessary
to add interaction terms in the ANN models. The 4-18-1 ANN
model with variables C, D, F, and G makes predictions as
accurate as the full ANN model with all control factors. The
mean prediction error for the 4-18-1 ANN model is 9.95 ×
10−13 �m, while it is 1.42 × 10−14 �m for the 8-18-1 ANN
model. Both models yield nearly perfect correlations with
R2 � 0.9999.

In light of the above comparisons, both ANN models yield
higher accuracy than the MLR models. The ANN model with
only four input variables produces better fits and predictions
than the more complex MLR models.

4.7 Hard-Facing Appearance Examination Analysis

Figures 6 and 7 show images of the three-dimensional laser
hard-facing surface with associated statistics for test 18, the
optimal trial. Compared with the average spacing between

Table 6 Performance statistics between multiple linear regression and artificial neural network models

Model Control factor combination

Multiple linear regression (MLR) Artificial neural network (ANN)

R2 Average error R2 Average error

1 A, B, C, D, E, F, G, H 0.37 1.782 0.9999 1.42 × 10−14

2 A, B, C, D, E, F, G, H, CD, CF, CG, DF and DG 0.74 1.145 … …
3 C, D, F, G 0.29 1.875 0.9999 9.95 × 10−13

4 C, D, F, G, CD, CF, CG, DF, DG 0.60 1.375 … …

A, powder hard-facing type; B, accelerating voltage, V; C, electric arc current, A; D, travel speed, cm/min; E, torch standoff, mm; F, powder feed rate, L/min;
G, pilot gas flow rate, L/min; H, preheat treatment, °C

Fig. 4 The RMS error performance of the 8-18-1 ANN model

Fig. 5 The RMS error performance of the 4-18-1 ANN model
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Fig. 6 Three-dimensional laser photograph of powdered hard-facing layers for test 18

Fig. 7 Laser three-dimensional photograph of powered hard-facing layers for the optimal setting
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coarse ripples of 4.94 mm from the original 18 trials, the op-
timal trial produces a wider surface spacing of 10.36 mm. It
yields an arithmetic mean deviation of hard-facing surface of
13.2 �m and a surface roughness value of 8.57 �m. The ap-
pearance of the surface beads also reveals that the optimal trial
produces a smoother hard-facing surface. Because surface ten-
sion drives the liquid flowing under the arc beam at the surface,
the movement of the flowing liquid is balanced by an equal and
opposite flow beneath the hard-facing. The optimal setting pro-
duces a maximum height of the summits equal to 32.1 �m, and
a maximum depth of valleys equal to 35.8 �m. It is evident that
the appearance of the hard-faced surface using the optimal
process control settings results in a finer ripple compared with
the other tests. Thus, the optimal setting should produce better
hard-facing surfaces, with reduced postprocess machine work-
ing time and cost.

The ripples in the powder hard-faced surface are produced
as a result of a variation in liquid flow to the back edge of the
coating pool as a consequence of convection and evaporation
effects. During the HEPT coating process, the matrix substrate
partially melts, and then rapidly solidifies as a self-quenching
hard-facing layer. It is because the coating layers rapidly cool
that they can be used for wear, heat, and corrosion resistance.
Thus, it is worth noting that the surface produced using the
optimal setting is better than those obtained with the other
process control settings.

5. Conclusions

Comparisons using ANN and MLR models for process con-
trol in HEPT powder hard-facing operations for wear-resistant
surfaces on tool steel have been described. Based on the ex-
perimental results:

1) Using the Taguchi method, the most significant factors af-
fecting the hard-facing surface roughness are electric arc
current, speed of travel, powder feed rate, and rate of gas
flow.

2) The following factors yield the best combination of process
variables:

• Factor A, level 1; factor B, level 3; factor C, level 1;
factor D, level 3;

• Factor E, level 1; factor F, level 1; factor G, level 2;
factor H, level 1.

3) Photographic examination of the hard-facing morphology
for HEPT coatings shows minor hard-faced roughness due
to surface tension. This occurred because the liquid that
flowed under the arc at the surface was balanced by flow
beneath the powder hard-facing.

4) The ANN models train and learn HEPT powder hard-
facings well. The simple ANN model using the four most
significant control variables produces a prediction as accu-
rate as the full ANN model. The mean prediction errors for
the simple and complete ANN models are 9.95 × 10−13 �m
and 1.42 × 10−14 �m, respectively. Both models yield
nearly perfect correlation (R2 � 0.999).

5) The ANN models generally demonstrate greater accuracy in
predicting powder hard-facing roughness for HEPT-coated
substrate than MLR models. The best MLR model (Eq 5)

yields a lower correlation (R2 � 0.744) and a larger average
error (1.145 �m) than the ANN models.
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